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Abstract

A new method is presented for implementing dis-
crete numerical convolution in passive circuit simula-
tion which achieves high efficiency by using a recur-
sive formulation. The technique starts with an FIR re-
sponse obtained by a conventional convolution method
and obtains an IIR filter using Padé approximants in
the z-domain. The resulting IIR filter is tested for sta-
bility using the Lehmer-Schur algorithm and for accu-
racy by comparing its impulse response to that of the
original FIR filter.

Introduction

There is a growing interest in efficient numerical tech-
niques for the representation of arbitrary lossy distrib-
uted systems within a nonlinear transient simulator.
There are two main procedures for the simulation of
passive distributed circuits in the time domain, namely,
convolution and lumped element approximation. Both
involve approximating the original frequency function
by either a series of exponential functions, in the case
of convolution, or a rational function, for the lumped
element approximation. The causal convolution tech-
nique[1], which is a convolution based method, provides
a general methodology to obtain a causal and stable
response of a general passive circuit, although it may
suffer from limitations in terms of simulation efficiency.
AWE methods [2-3] implement the lumped element ap-
proximation by employing Padé Approximants to ob-
tain a rational function that approximates the original
frequency function. Although the AWE methods are
very efficient when implemented recursively [3], they
suffer also from some drawbacks since the Padé approx-
imation requires a series representation of the original
frequency function in the Laplace domain and may re-
sult in unstable and/or uncausal rational functions.

The procedure presented here is based on the causal
convolution formulation[1] which allows a frequency
function to be modeled as a causal FIR (Finite Im-
pulse Response) filter. Using a recursive representa-
tion, it is shown that greatly improved numerical effi-
ciency may be achieved by transforming from an FIR
to an IIR (Infinite Impulse Response) representation.
The order of the resulting IIR filter is increased until
stable implementation is achieved. The IIR filter is also
tested for accuracy where the maximum error relative
to the maximum FIR filter coefficient, is below a suit-
able bound. The technique will only fail if no suitable
IIR filter is found that is both stable and has the same
impulse response as the FIR filter with fewer time steps
or a smaller number of coefficients. This approach of-
fers a reliable and potentially highly-efficient method
for simulation of distributed circuits within non-linear
time domain simulators.

IIR representation from FIR

As shown in [1], an FIR filter can be used to approx-
imate the time-domain representation of an original
frequency function. This function can be either rep-
resented in analytical or sampled data form, both of
which can produce equally spaced data points. Nu-
merically, this is done over a suitable frequency range
and within some error bound. The FIR is represented
in the time domain as a series of weighted Dirac Delta
functions is,
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which is causal by definition and stable considering the
condition that the coefficients after N are negligible.
This response in the z-domain is,
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where the region of convergence of the series is 0 <
lz]l < oo. This representation is unique in the sense
that for every two functions that have the same series
representation in z, they will have the same impulse
response. Therefore the main idea is to find a rational
representation of f(z) which has the same series repre-
sentation. The aim would be to reduce both the order
of the f(z) function and the number of coefficients. This
is the exact definition of the Padé approximants when
applied at infinity [4]. The usual form of Pade’s ratio-
nal function taken at infinity is,
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This is very similar to the IIR filter in the z-domain

which has the form
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Where a; = a; and b; = —l;i with ag = hg. The result-
ing IIR filter will use M+L+1 coefficients of h; and will
have the usual difference equation form,
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When M + L+ 1 > N we can either augment the se-
ries with zeros to make sure that the infinite response
of the IIR filter terminates or extend it in any par-
ticular fashion for cases where the original is known
to have an infinite response, e.g. the S parameter of
an open or short circuit. The procedure suggested by
the above reasoning is to start with the lowest pos-
sible order to obtain an IIR filter function and then
increase the order, testing repeatedly for stability and
accuracy until we either reach a suitable IIR filter or
the order is increased beyond some limit. The limit is
devised based on implementation specifics; a memory
limit would limit the time steps to N/2 since above
this the space required to store previous time points
is larger than the original FIR filter, and a complexity
limit would require that M + L + 1 < N, since this
would reduce the number of convolution operations re-
quired per time step in a transient analysis.

Stability and Accuracy tests

An IIR filter is unstable if its z domain form has at
least one pole outside the unit circle in the complex

plane. As a result a suitable test would be to check
whether the denominator has zeroes outside the unit
circle. To that effect we utilize the Lehmer-Schur algo-
rithm[5] which tests if a polynomial has zeroes inside
the unit circle. Thus before applying the algorithm we
use
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to map the outside of the unit circle to its interior and
then apply the test on f(w). This test is O(n?) where
n is the order of the polynomial and is analogous to
the Hurwitz procedure[6] in the Laplace Domain. To
obtain the Impulse response for an IIR filter one can
either evaluate the difference equation or obtain the
Laurent series around infinity i.e. the z-transform in
series representation. Once the time response is found
it is compared to the original FIR response.

Examples

The IIR filter obtained above will give the exact analyt-
ical form for the S parameters of an unmatched lossless
or lossy distortionless [7] transmission lines. Such lines
will have FIR response as in Fig.1.

However, when implemented as an IIR filter it will
have just one time step for S11 and two time steps for
S12 with a (stable) pole zero distribution as in Fig.2.

Tests on more general transmission lines including
loss and dispersion indicate suitable forms of IIR filters
would give large savings in the coefficients required for
the IIR filter compared to the starting FIR filter as
shown in Fig.3 and Fig.4 and accompanying Tables.
For example, while for the dispersive lossy line 97 con-
volution steps were needed in conventional methods,
only 17 are needed in the recursive formulation.

Conclusion

The method proposed here will work with either ana-
lytical or sampled frequency functions. By using a re-
cursive formulation, it offers significant computaional
advantages over standard convolution techniques, and
retains the essential requirements of causality and sta-
bility.
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Figure 1: FIR impulse response of a lossy distortionless 1{2 line with 50€2 termination which has quarter wavelength
at 2.5GHz and «a = 10 nepers/meter. S11 on the left, S12 on the right
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Figure 2: Pole zero positions of the lossy distortionless line above. S11 on the left, S12 on the right. * for a pole,
o for a zero.
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Figure 3: FIR impulse response of a lossy dispersive line with 50€2. S11 on the left, S12 on the right
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Figure 4: Pole zero positions of the lossy dispersive line. S11 on the left, S12 on the right. % for a pole, o for a
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Table 1: Comparison showing the advantages of IIR, compared to FIR filters. Simulation performed on a specially

modified SPICE simulator.

| Function | Filter

| No. of Coefficients No. of Taps in filter IIR Memory Advantage IIR Complexity Advantage IIR Speed-up Factor
FIR 97 97
S11 TR 19 9 5.1 5.4 4.1
FIR 97 97
S12 TR 7 3 5.7 6.1 4.9

Table 2: Comparison showing the advantages of IIR compared to FIR filters. Simulation performed on a specially

modified SPICE simulator.
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